DIFFERENCE SCHEMES 2.1.

The difference schemes deals with the variation in the function when the independent variable changes by equal intervals. It is only a question of notation what

(i) Finite differences. Suppose the function y = f(x) has the values $y_0, y_1, y_2, \dots, y_n$ for the values of $x = x_0, x_0 + h, x_0 + 2h, \dots, x_0 + nh$. To determine the values of f(x) and f'(x) is based on the principle of finite differences which requires

(ii) Forward differences. The differences $y_1 - y_0, y_2 - y_1, ..., y_n - y_{n-1}$ are called first **forward differences** and are denoted by $\Delta y_0, \Delta y_1, ..., \Delta y_{n-1}$ where Δ is known as forward difference operator. Thus the first forward differences are

$$\Delta y_k = y_{k+1} - y_k.$$

Similarly, the second forward differences are

$$\Delta^{2} y_{k} = \Delta y_{k+1} - \Delta y_{k}$$

= $y_{k+2} - y_{k+1} - y_{k+1} + y_{k}$
= $y_{k+2} - 2y_{k+1} + y_{k}$.
$$\Delta^{r} y_{k} = \Delta^{r-1} y_{k+1} - \Delta^{r-1} y_{k}$$
.

In general

			~ /	c
(iii)	Forward	differences	table :	

x	У	First Diff.	Second Diff.	Third Diff.	Fourth Diff.	Fifth Diff
<i>x</i> ₀	<i>y</i> ₀					2111.
		Δy ₀				
$x_0 + h$	<i>y</i> ₁		$\Delta^2 y_0$			
		Δy_1		$\Delta^3 y_0$		
$x_0 + 2h$	y_2		$\Delta^2 y_1$		$\Delta^4 y_0$	
		Δy_2		$\Delta^3 y_1$		15. Vo
$x_0 + 3h$	<i>y</i> ₃		$\Delta^2 y_2$		$\Delta^4 y_1$	- y0
		Δy_3		$\Delta^3 y_2$		
$x_0 + 4h$	<i>y</i> ₄		$\Delta^2 y_3$			
		Δy_4				
$x_0 + 5h$	<i>y</i> ₅					

In this table Δy_0 , $\Delta^2 y_0$, $\Delta^3 y_0$ etc. are called the **leading differences**.

The operator Δ obeys the following laws :

(i) $\Delta [f(x) \pm g(x)] = \Delta f(x) \pm \Delta g(x)$

(ii) $\Delta [c f(x)] = c \Delta f(x)$, c being a constant

(iii) $\Delta(c) = 0$, c being a constant.

(iv) Backward differences. The differences $y_1 - y_0, y_2 - y_1, ..., y_n - y_{n-1}$ are also called first backward differences and denoted by $\nabla y_1, \nabla y_2, ..., \nabla y_n$ respectively. Thus we have

1.

and

$$\nabla y_k = y_k - y_{k-1}$$
$$\nabla^2 y_k = \nabla y_k - \nabla y_{k-1}$$
$$\nabla^r y_k = \nabla^{r-1} y_k - \nabla^{r-1} y_{k-1}$$

In general

Thus we have a backward difference table as under :

7

x	y	First Diff.	Second Diff.	Third Diff.	Fourth Diff.	Fifth Diff.
<i>x</i> ₀	<i>y</i> ₀					
		∇y_1				
$x_0 + h$	<i>y</i> ₁		$\nabla^2 y_2$			
		∇y_2		$\nabla^3 y_3$		
$x_0 + 2h$	<i>y</i> ₂		$\nabla^2 y_3$		$\nabla^4 y_4$	
		∇y_3		$\nabla^3 y_4$		$\nabla^5 y_5$
$x_0 + 3h$	<i>y</i> ₃		$\nabla^2 y_4$		$\nabla^4 y_5$	
		∇y_4		$\nabla^3 y_5$		
$x_0 + 4h$	<i>y</i> ₄		$\nabla^2 y_5$			
		∇y_5				
$x_0 + 5h$	<i>y</i> ₅					

(v) Central differences. If

 $y_1 - y_0 = \delta y_{1/2}, y_2 - y_1 = \delta y_{3/2}, ..., y_n - y_{n-1} = \delta y_{n-1/2}.$

Then these differences called central differences and δ is called central difference operator.

Similarly we can define higher order central differences as

$$\delta y_{3/2} - \delta y_{1/2} = \delta^2 y_1, \ \delta y_{5/2} - \delta y_{3/2} = \delta^2 y_2$$

 $\delta^2 y_2 - \delta^2 y_1 = \delta^3 y_{3/2}$ and so on

and

$${}^{2}y_{2} - \delta^{2}y_{1} = \delta^{3}y_{3/2}$$
 and so on.

The contrar and check table is given below :								
x	У	First Diff.	Second Diff.	Third Diff.	Fourth Diff.	Fifth Diff.		
x_0	<i>y</i> ₀			2111				
<i>x</i> ₁	<i>y</i> ₁	δy _{1/2}	$\delta^2 y_1$					
<i>x</i> ₂	<i>y</i> ₂	δν= (2	$\delta^2 y_2$	$\delta^3 y_{3/2}$	$\delta^4 y_2$			
<i>x</i> 3	<i>y</i> ₃	δy _{7/2}	$\delta^2 y_3$	$\delta^3 y_{5/2}$	$\delta^4 y_3$	$\delta^5 y_{5/2}$		
<i>x</i> ₄	<i>y</i> 4	δy _{9/2}	$\delta^2 y_4$	δ [°] y _{7/2}				
<i>x</i> ₅	<i>y</i> ₅							
				1	1			

The central differen

(vi) Other difference operators :

(a) Shift operator. The operator which increases the argument x by h is called shift operator

and

$$E f(x) = f(x + h)$$

 $E^{2} f(x) = f (x + 2h)$
 $E^{3} f(x) = f (x + 3h) \dots$ etc.

This operator E is called *shift operator*. The inverse operator E^{-1} is defined as

$$E^{-1} f(x) = f(x - h), E^{-2} f(x) = f(x - 2h) \dots$$
 etc.

Thus in general $E^n f(x) = f(x + nh)$ or $E^n y_x = y_{x + nh}$.

(b) Averaging operator. The averaging operator μ is defined as

$$\mu f(x) = \frac{1}{2} \left[f\left(x + \frac{1}{2}h \right) + f\left(x - \frac{1}{2}h \right) \right]$$
$$\mu y_x = \frac{1}{2} \left[y_{x + 1/2h} + y_{x - 1/2h} \right].$$

or

REMARK :

The shift operator is also knows as increment operator. ۲

(vii) Relations between the operators. We shall have following identities :

(a) $\Delta = E - 1$ (b) $\nabla = 1 - E^{-1}$ (c) $\delta = E^{1/2} - E^{-1/2}$ (*d*) $\Delta = E\nabla = \nabla E = \delta E^{1/2}$ (f) $\mu = \frac{1}{2} (E^{1/2} + E^{-1/2}).$ (e) $E = e^{hD}$

Proof. (a) Since
$$\Delta y_x = y_{x+h} - y_x$$
$$= Ey_x - y_x \quad \text{for all } x$$
$$= (E-1) y_x \quad \text{for all } x$$

$$\begin{split} & \Delta = E - 1 \text{ or } E = 1 + \Delta. \\ \text{(b) Since} & \nabla y_x = y_x - h \\ & = y_x - E^{-1} y_x \text{ for all } x \\ & \nabla y_x = (1 - E^{-1}) y_x \text{ for all } x \\ & \nabla y_x = (1 - E^{-1}) y_x \text{ for all } x \\ & \nabla y_x = (1 - E^{-1}) y_x \text{ for all } x \\ & = y_x - E^{-1/2} y_x \text{ for all } x \\ & = E^{1/2} y_x - E^{-1/2} y_x \text{ for all } x \\ & = E^{1/2} - E^{-1/2}. \\ \text{(c) Since} & \delta = E^{1/2} - E^{-1/2}. \\ \text{(d)} & E \nabla y_x = E(y_x - y_{x-h}) \\ & = Ey_x - Ey_{x-h} \text{ for all } x \\ & = y_{x+h} - y_x \text{ for all } x \\ & = y_{x+h} - y_x \text{ for all } x \\ & = y_x + h - y_x \text{ for all } x \\ & = y_x + h - y_x \text{ for all } x \\ & = y_x + h - y_x \text{ for all } x \\ & = y_x + h - y_x \text{ for all } x \\ & = y_x + h - y_x \text{ for all } x \\ & = y_x + h - y_x \text{ for all } x \\ & = (E^{1/2} - E^{-1/2}) \\ \text{(e) Since} & E f(x) = f(x + h) \\ & = f(x) + hf'(x) + \frac{h^2}{2!} f''(x) + \dots \text{ [By Taylor's Theorem]} \\ & = f(x) + h D f(x) + \frac{h^2}{2!} D^2 f(x) + \dots \\ & = (1 + hD + \frac{h^2}{2!} D^2 + \dots) f(x) \\ & E f(x) = e^{hD} \text{ for all } x. \\ \text{(f) By the definition of averaging operator, we have} \\ & \mu y_x = \frac{1}{2} [y_x + 1/2h + y_x - 1/2h] \\ & = \frac{1}{2} [(E^{1/2} + E^{-1/2}) y_x] \end{aligned}$$

[By the definition of shift operator]

$$\mu y_x = \frac{1}{2} \left[E^{1/2} + E^{-1/2} \right] y_x$$

This is true for all *x*, therefore

$$\mu = \frac{1}{2} (E^{1/2} + E^{-1/2}).$$

(VI	(viii) The uniforence scheme is constructed in the following table :								
x	У	First Diff.	Second Diff.	Third Diff.	Fourth Diff.	Fifth Diff.			
<i>x</i> ₀	Y0	Δy ₀							
<i>x</i> ₁	<i>y</i> ₁	Δν1	$\Delta^2 y_0$						
<i>x</i> ₂	<i>y</i> ₂ —	Δy ₂	$\Delta^2 y_1$	$\Delta^3 y_0$	$\Delta^4 y_0$				
<i>x</i> ₃	У3	Δy_3	$\Delta^2 y_2$	$\Delta^{3}y_{1}$	$\Delta^4 y_1$	$> \Delta^5 y_0$			
<i>x</i> ₄	У4	_Δy4	$\Delta^2 y_3$	$\Delta^3 y_2$					
x_5	y ₅								

. .

In the above $\Delta^k y_0$ lie on a straight line down to right. On the other hand, since $\Delta = E\nabla$, we have, $\Delta y_4 = \nabla y_5$, $\Delta^2 y_3 = \nabla^3 y_5$, $\Delta^3 y_2 = \nabla^3 y_5$ and so on, further since $\nabla^k y_n$ lie on a straight line sloping downward to the right. Similarly we also have $\Delta = E^{1/2} \delta$ and hence, we have $\Delta^2 y_1 = E\delta^2 y_1 = \delta^2 y_2$, $\Delta^4 y_0 = \delta^2 y_2$ and so on. In this way, we can observe that $\delta^{2k} y_k$ lie on a horizontal line.

(ix) Effect of an error on a difference table. Let $y_0, y_1, y_2, \dots, y_n$ be the values of function at $x = x_0, x_1, x_2 \dots x_n$ and ε be an error in the value y_5 . Then the The table

Ine	table	Will	be	as	under.

x	У	$\Delta \mathbf{v}$.2	0	
<i>x</i> ₀	Yo		$\Delta^{-}y$	$\Delta^{3}\mathbf{y}$	$\Delta^4 y$
	50	Δνο			
x_1	<i>y</i> ₁	-50	A2.		
	_	Δν1	Δy_0	9	
x_2	<i>y</i> 2	-51	.2	$\Delta^{3}y_{0}$	
		Δνο	Δy_1	9	$\Delta^4 y_0$
x_3	V2	-52	.2	$\Delta^{3}y_{1}$	
	~ 5	معر	$\Delta^2 y_2$. 2	$\Delta^4 y_1 + \varepsilon$
x_4	N.	493	12	$\Delta^{3}y_{2} + \varepsilon$	
	54	$\Delta y + s$	$\Delta^{-}y_{3} + \varepsilon$. 9	$\Delta^4 y_2 - 4\epsilon$
<i>x</i> ₅	V= + 5	$\Delta y_4 + c$	12 0	$\Delta^{3}y_{3} - 3\varepsilon$	
	55+0	An	$\Delta^2 y_4 - 2\varepsilon$	2	$\Delta^4 y_3 + 6\varepsilon$
xc		$\Delta y_5 - \varepsilon$.9	$\Delta^{3}y_{4} + 3\varepsilon$	
0	<i>y</i> ₆		$\Delta^2 y_5 + \varepsilon$		$\Delta^4 y_4 - 4\epsilon$
ra		Δy ₆	2	$\Delta^3 y_5 + \varepsilon$	
~.7	y_7		$\Delta^2 y_6$		$\Delta^4 y_5 + \varepsilon$
25		Δy_7		$\Delta^3 y_6$	
18	y_8		$\Delta^2 y_7$		$\Delta^4 y_6$
		Δy_8		$\Delta^2 y_7$	
x_9	<i>y</i> 9		$\Delta^3 y_8$		
		Δy_9			
x ₁₀	y ₁₀				

It is clear from above table that : The error propagates in a triangular pattern and grows rapidly. (i) (ii) The error increases with the increasing the order of differences. (iii) The coefficients of ε 's in any column are the binomial coefficient of $(1 - \varepsilon)^{n}$ (iv) The algebraic sum of the errors in any difference column is zero.