Calculus of Finite Differences

2.1. DIFFERENCE SCHEMES

The difference schemes deals with the variation in the function when the independent variable changes by equal intervals. It is only a question of notation what the differences are called.
(i) Finite differences. Suppose the function $y=f(x)$ has the values $y_{0}, y_{1}, y_{2}, \ldots, y_{n}$ for the values of $x=x_{0}, x_{0}+h, x_{0}+2 h, \ldots, x_{0}+n h$. To determine the values of $f(x)$ and $f^{\prime}(x)$ is based on the principle of finite differences which requires
following differences
(ii) Forward differences. The differences $y_{1}-y_{0}, y_{2}-y_{1}, \ldots, y_{n}-y_{n-1}$ are called first forward differences and are denoted by $\Delta y_{0}, \Delta y_{1}, \ldots, \Delta y_{n-1}$ where Δ is known as forward difference operator. Thus the first forward differences are given by

$$
\Delta y_{k}=y_{k+1}-y_{k} .
$$

Similarly, the second forward differences are

$$
\begin{aligned}
\Delta^{2} y_{k} & =\Delta y_{k+1}-\Delta y_{k} \\
& =y_{k+2}-y_{k+1}-y_{k+1}+y_{k} \\
& =y_{k+2}-2 y_{k+1}+y_{k} .
\end{aligned}
$$

In general

$$
\Delta^{r} y_{k}=\Delta^{r-1} y_{k+1}-\Delta^{r-1} y_{k} .
$$

(iii) Forward differences table :

\boldsymbol{x}	\boldsymbol{y}	First Diff.	Second Diff.	Third Diff.	Fourth Diff.	Fifth Diff.
$x_{0}+h$	y_{1}	$\Delta \boldsymbol{y}_{\mathbf{0}}$				
$x_{0}+2 h$	y_{2}	Δy_{1}	$\Delta^{2} \boldsymbol{y}_{\mathbf{0}}$			
$x_{0}+3 h$	y_{3}	Δy_{2}	$\Delta^{2} y_{1}$	$\Delta \boldsymbol{y}_{\mathbf{0}}$	$\Delta^{4} \boldsymbol{y}_{\mathbf{0}}$	
$x_{0}+4 h$	y_{4}	Δy_{3}	$\Delta y^{2} y_{2}$	Δy_{1}	$\Delta^{4} y_{1}$	$\Delta^{\mathbf{5}} \boldsymbol{y}_{\mathbf{0}}$
$x_{0}+5 h$	y_{5}	Δy_{4}	Δy_{3}			

In this table $\Delta y_{0}, \Delta^{2} y_{0}, \Delta^{3} y_{0}$ etc. are called the leading differences.
The operator Δ obeys the following laws :
(i) $\Delta[f(x) \pm g(x)]=\Delta f(x) \pm \Delta g(x)$
(ii) $\Delta[c f(x)]=c \Delta f(x), c$ being a constant
(iii) $\Delta(c)=0, c$ being a constant.
(iv) Backward differences. The differences $y_{1}-y_{0}, y_{2}-y_{1}, \ldots, y_{n}-y_{n-1}$ are also called first backward differences and denoted by $\nabla y_{1}, \nabla y_{2}, \ldots, \nabla y_{n}$ respectively. Thus we have

$$
\nabla y_{k}=y_{k}-y_{k-1}
$$

and

$$
\begin{aligned}
& \nabla^{2} y_{k}=\nabla y_{k}-\nabla y_{k-1} \\
& \nabla^{r} y_{k}=\nabla^{r-1} y_{k}-\nabla^{r-1} y_{k-1} .
\end{aligned}
$$

In general
Thus we have a backward difference table as under :

\boldsymbol{x}	\boldsymbol{y}	First Diff.	Second Diff.	Third Diff.	Fourth Diff.	Fifth Diff.
$x_{0}+h$	y_{1}	∇y_{1}				
$x_{0}+2 h$	y_{2}	∇y_{2}	$\nabla^{2} y_{2}$			
$x_{0}+3 h$	y_{3}	∇y_{3}	$\nabla^{2} y_{3}$			$\nabla^{3} y_{3}$
$x_{0}+4 h$	y_{4}	∇y_{4}	$\nabla^{2} y_{4}$			
$x_{0}+5 h$	y_{5}		$\nabla^{2} y_{5}$	$\nabla^{3} y_{5}$		$\nabla^{4} y_{5}$
$\nabla^{5} y_{5}$						

(v) Central differences. If

$$
y_{1}-y_{0}=\delta y_{1 / 2}, y_{2}-y_{1}=\delta y_{3 / 2}, \ldots, y_{n}-y_{n-1}=\delta y_{n-1 / 2}
$$

Then these differences called central differences and δ is called central difference operator.

Similarly we can define higher order central differences as
and

$$
\delta y_{3 / 2}-\delta y_{1 / 2}=\delta^{2} y_{1}, \delta y_{5 / 2}-\delta y_{3 / 2}=\delta^{2} y_{2}
$$

$$
\delta^{2} y_{2}-\delta^{2} y_{1}=\delta^{3} y_{3 / 2} \text { and so on. }
$$

The central difference table is given below:

\boldsymbol{x}	\boldsymbol{y}	First Diff.	Second Diff.	Third Diff.	Fourth Diff.	Fifth Diff.
x_{0}	y_{0}	$\delta y_{1 / 2}$				
x_{1}	y_{1}		$\delta^{2} y_{1}$			
x_{2}	y_{2}	$\delta y_{3 / 2}$		$\delta^{3} y_{3 / 2}$		
x_{3}	y_{3}	$\delta y_{5 / 2}$	$\delta^{2} y_{2}$		$\delta^{3} y_{2}$	
x_{4}	y_{4}	$\delta y_{7 / 2}$	$\delta^{2} y_{3}$	$\delta_{5 / 2}$	$\delta^{4} y_{3}$	$\delta^{5} y_{5 / 2}$
x_{5}	δ_{5}	$\delta^{2} y_{4}$	$\delta^{3} y_{7 / 2}$			
(vi) Other difference operators :						

(vi) Other difference operators :
(a) Shift operator. The operator which increases the argument x by h is called shift operator

$$
\begin{aligned}
E f(x) & =f(x+h) \\
E^{2} f(x) & =f(x+2 h) \\
E^{3} f(x) & =f(x+3 h) \ldots \text { etc. }
\end{aligned}
$$

This operator E is called shift operator. The inverse operator E^{-1} is defined

$$
E^{-1} f(x)=f(x-h), E^{-2} f(x)=f(x-2 h) \ldots \text { etc. }
$$

Thus in general $\quad E^{n} f(x)=f(x+n h)$ or $E^{n} y_{x}=y_{x+n h}$.
(b) Averaging operator. The averaging operator μ is defined as
or

$$
\mu f(x)=\frac{1}{2}\left[f\left(x+\frac{1}{2} h\right)+f\left(x-\frac{1}{2} h\right)\right]
$$

$$
\mu y_{x}=\frac{1}{2}\left[y_{x+1 / 2 h}+y_{x-1 / 2 h}\right]
$$

REMARK :

- The shift operator is also knows as increment operator.
(vii) Relations between the operators. We shall have following identities :
(a) $\Delta=E-1$
(b) $\nabla=1-E^{-1}$
(c) $\delta=E^{1 / 2}-E^{-1 / 2}$
(d) $\Delta=E \nabla=\nabla E=\delta E^{1 / 2}$
(e) $E=e^{h D}$
(f) $\mu=\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)$.

Proof. (a) Since

$$
\begin{aligned}
\Delta y_{x} & =y_{x+h}-y_{x} & & \\
& =E y_{x}-y_{x} & & \text { for all } x \\
& =(E-1) y_{x} & & \text { for all } x
\end{aligned}
$$

$$
\Delta=E-1 \text { or } E=1+\Delta \text {. }
$$

(b) Since

$$
\begin{aligned}
\nabla y_{x} & =y_{x}-y_{x-h} \\
& =y_{x}-E^{-1} y_{x} \text { for all } x \\
\nabla y_{x} & =\left(1-E^{-1}\right) y_{x} \text { for all } x \\
\nabla & =1-E^{-1} .
\end{aligned}
$$

(c) Since

$$
\delta y_{x}=y_{x+h / 2}-y_{x-1 / 2 h}
$$

$$
=E^{1 / 2} y_{x}-E^{-1 / 2} y_{x} \text { for all } x
$$

$$
=\left(E^{1 / 2}-E^{-1 / 2}\right) y_{x} \quad \text { for all } x
$$

$\therefore \quad \delta=E^{1 / 2}-E^{-1 / 2}$.
(d)

$$
\begin{aligned}
E \nabla y_{x} & =E\left(y_{x}-y_{x-h}\right) \\
& =E y_{x}-E y_{x-h} \text { for all } x \\
& =y_{x+h}-y_{x} \quad \text { for all } x \\
& =\Delta y_{x}
\end{aligned}
$$

$$
E \nabla=\Delta
$$

and

$$
\begin{align*}
\nabla E y_{x} & =\nabla y_{x+h} \text { for all } x \tag{1}\\
& =y_{x+h}-y_{x} \text { for all } x \\
& =\Delta y_{x}
\end{align*}
$$

$$
\begin{equation*}
\therefore \quad \nabla E=\Delta \tag{2}
\end{equation*}
$$

From (1) and (2)

$$
\Delta=E \nabla=\nabla E
$$

(e) Since

$$
\begin{aligned}
E f(x) & =f(x+h) \\
& =f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\ldots \text { [By Taylor's Theorem] } \\
& =f(x)+h D f(x)+\frac{h^{2}}{2!} D^{2} f(x)+\ldots \\
& =\left(1+h D+\frac{h^{2}}{2!} D^{2}+\ldots\right) f(x) \\
E f(x) & =e^{h D} f(x) \\
E & =e^{h D} \text { for all } x .
\end{aligned}
$$

(f) By the definition of averaging operator, we have

$$
\begin{aligned}
& \mu y_{x}=\frac{1}{2}\left[y_{x+1 / 2 h}+y_{x-1 / 2 h}\right] \\
&=\frac{1}{2}\left[\left(E^{1 / 2}+E^{-1 / 2}\right) y_{x}\right] \\
& \quad[\text { By the definition of shift operator] } \\
& \mu y_{x}=\frac{1}{2}\left[E^{1 / 2}+E^{-1 / 2}\right] y_{x} .
\end{aligned}
$$

This is true for all x, therefore

$$
\mu=\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)
$$

(viii) The difference scheme is constructed in the following table :

\boldsymbol{x}	\boldsymbol{y}	First Diff.	Second Diff.	Third Diff.	Fourth Diff.	Fifth Diff.
x_{0}	y_{0}	Δy_{0}				
x_{1}	y_{1}	Δy_{0}	$\Delta^{2} y_{0}$			
x_{2}	y_{2}	Δy_{1}				
x_{3}	y_{3}	Δy_{2}	$\Delta^{2} y_{1}$	$\Delta^{3} y_{0}$		$\Delta{ }^{4} y_{0}$
x_{4}	y_{4}	Δy_{3}	$\Delta^{2} y_{2}$	$\Delta^{3} y_{1}$	$\Delta \Delta^{4}$	Δy^{4}
x_{5}	y_{5}	Δy_{4}	$\Delta^{2} y_{3}$	$\Delta^{3} y_{2}$		$\Delta \Delta^{5} y_{0}$

In the above $\Delta^{k} y_{0}$ lie on a straight line down to right. On the other hand, since $\Delta=E \nabla$, we have, $\Delta y_{4}=\nabla y_{5}, \Delta^{2} y_{3}=\nabla^{3} y_{5}, \Delta^{3} y_{2}=\nabla^{3} y_{5}$ and so on, further since $\nabla^{k} y_{n}$ lie on a straight line sloping downward to the right. Similarly we also have $\Delta=E^{1 / 2} \delta$ and hence, we have $\Delta^{2} y_{1}=E \delta^{2} y_{1}=\delta^{2} y_{2}, \Delta^{4} y_{0}=\delta^{2} y_{2}$ and so on. In this way, we can observe that $\delta^{2 k} y_{k}$ lie on a horizontal line.
(ix) Effect of an error on a difference table. Let $y_{0}, y_{1}, y_{2}, \ldots, y_{n}$ be the values of function at $x=x_{0}, x_{1}, x_{2} \ldots x_{n}$ and ε be an error in the value y_{5}. Then the value of y_{0} with error is $y_{5}+\varepsilon$.

The table will be as under.

\boldsymbol{x}	\boldsymbol{y}	$\Delta \boldsymbol{y}$	$\Delta^{2} \boldsymbol{y}$	$\Delta^{3} \boldsymbol{y}$	$\Delta^{4} \boldsymbol{y}$
x_{0}	y_{0}	Δy_{0}			
x_{1}	y_{1}	Δy_{1}	$\Delta^{2} y_{0}$		
x_{2}	y_{2}	Δy^{3}	$\Delta^{2} y_{1}$	Δ^{3}	
x_{3}	y_{3}	Δy_{2}	$\Delta^{2} y_{2}$	$\Delta^{3} y_{1}$	$\Delta^{4} y_{0}$
x_{4}	y_{4}	Δy_{3}	Δ^{2}	$\Delta^{3} y_{2}+\varepsilon$	$\Delta^{4} y_{1}+\varepsilon$
x_{5}	$y_{5}+\varepsilon$	$\Delta y_{4}+\varepsilon$	$\Delta^{2} y_{3}+\varepsilon$	$\Delta^{3} y_{3}-3 \varepsilon$	$\Delta^{4} y_{2}-4 \varepsilon$
x_{6}	y_{6}	$\Delta y_{5}-\varepsilon$	$\Delta^{2} y_{4}-2 \varepsilon$	$\Delta^{3} y_{4}+3 \varepsilon$	$\Delta^{4} y_{3}+6 \varepsilon$
x_{7}	y_{7}	Δy_{6}	$\Delta^{2} y_{5}+\varepsilon$	$\Delta^{3} y_{5}+\varepsilon$	$\Delta^{4} y_{4}-4 \varepsilon$
x_{8}	y_{8}	Δy_{7}	$\Delta^{2} y_{6}$	Δ^{3}	$\Delta^{2} y_{7}$
x_{9}	Δy_{8}	$\Delta^{4} y_{5}+\varepsilon$	$\Delta^{4} y_{6}$		
x_{10}	y_{9}	Δy_{9}	$\Delta^{3} y_{8}$	$\Delta^{2} y_{7}$	
y_{10}	Δ				

It is clear from above table that :
(i) The error propagates in a triangular pattern and grows rapidly.
(ii) The error increases with the increasing the order of differences.
(iii) The coefficients of ε 's in any column are the binomial coefficient of $(1-\varepsilon)^{n}$
(iv) The algebraic sum of the errors in any difference column is zero.

